
Recent Progress in Nonlinear and Linear Solvers

P A Lott1, H C Elman2, K J Evans3, X S Li4, A G Salinger5, C S Woodward1

1 Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
2 University of Maryland, College Park, MD 20742, USA
3 Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
4 Lawrence Berkely National Laboratory, Berkeley, CA 94720, USA
5 Sandia National Laboratories, Albuquerque, NM 87185, USA

E-mail: Aaron.Lott@llnl.gov

Abstract. We discuss two approaches for tackling algebraic systems; one is based on block
preconditioning, and the other is based on multifrontal and hierarchical matrix methods. First we consider
a new preconditioner framework for supporting implicit time integration within an atmospheric climate
model. We give an overview of the computational infrastructure used in atmospheric climate studies,
address specific challenges of weak scalability of numerical methods used in these codes, outline a strategy
for addressing these challenges, and provide details about the software infrastructure being developed
to implement these ideas. In the second part, we present our recent results of employing hierarchically
semiseparable low-rank structure in a multifrontal factorization framework. This work work leads to
superfast linear solvers for elliptic PDEs and effective preconditioners for a wider class of sparse linear
systems.

1. Enabling Scalable Solvers in Atmospheric Climate Models
Understanding the sensitivity of Earth’s climate to radiative forcing requires ensemble forecasts over
long time periods. In order to resolve local phenomena, such as hurricanes, and measure variability at
the decadal scale, high resolution global simulations are needed. Improvements in numerical methods
and parallel computing architectures have led to significant modeling capability [1]. However, long-term
high-resolution climate studies require further algorithmic advances in order to fully utilize these and
future architectures.

The Community Earth System Model (CESM) provides coupled atmospheric, land, ocean, and ice
climate models to address scientific questions about the Earth’s climate and to provide information
for making policy decisions. The Community Atmospheric Model (CAM) is the atmospheric model
component of CESM. Atmospheric dynamics are integrated forward in time through a dynamical
core. A spectral element dynamical core (CAM-SE) based on the High-Order Method Modeling
Environment (HOMME) has strong scaling features, making it a favorable choice for high-resolution
simulation. HOMME uses a cubed sphere, spectral-element discretization of the Earth and supports two
mathematical models for the atmosphere, the shallow water equations and the primitive equations. In
this paper, we discuss numerical methods being developed to support the shallow water component in
HOMME [2].

The numerical methods used in the default branch of HOMME are explicit. Numerical stability
requirements of these methods force the maximum time step to be less than the minimum grid size
divided by the maximum flow velocity, the CFL condition [3]. This condition causes time steps to
become small when simulating atmospheric flows at high resolution. For a spectral-element method

of order N, with M elements, the grid points within each element are spaced like 1/N2 near element
boundaries; this causes the time step ∆t to be inversely proportional to MN2. The superlinear
computational complexity in spatial resolution expressed through the CFL constraint prevents weak
scaling of explicit methods [4].

Implicit methods allow time steps to be taken independent of grid resolution and can provide a weak
scalable alternative to explicit methods. Implicit methods have recently been added to HOMME by
interfacing with nonlinear and linear solvers provided through Trilinos [5]. At each timestep a matrix-
free Newton’s method is used as the nonlinear solver. In each nonlinear iteration, a Krylov iterative
method solves the subsidiary linear system. The Jacobian-vector product needed by the Krylov iteration
is approximated by a finite difference directional derivative of the residual vector. This implicit code
matches the strong scaling of the explicit code when a similar size time step is used [6]. Additionally
with the implicit method, timesteps can be taken 30–60 times greater than the gravity wave stability limit
and still achieve results where the L2 error is of the same order as the explicit scheme [7]. The caveat of
this implicit approach, however, is the cost of the linear system solve, which creates a bottleneck in the
simulation.

The linear system to be solved at each nonlinear iteration is sparse and nonsymmetric with dense
subblocks corresponding to the operator defined within each element. Iterative methods can be used to
solve this system, but the rate of convergence of these methods depends on matrix properties such as
the condition number and spread of eigenvalues. Preconditioners, which can be viewed as matrices that
transform a linear system into a system with improved properties, are used to accelerate the convergence
of iterative methods. The effectiveness of a preconditioner relies on its ability to mimic the spectrum of
the linear operator while at the same time being cheap to apply. No particular rule determines a means of
striking this balance; instead, one often relies on heuristics to help form a method for a specific problem.
Block preconditioners based on approximating the Schur complement of linear systems have been shown
to dramatically improve convergence rates of linear systems related to fluid models [8, 9, 10, 11].

1.1. Outline of Block Preconditioning Methods
Consider the 2×2 block linear system[

A B
C E

]
︸ ︷︷ ︸

A

[
x1
x2

]
︸ ︷︷ ︸

~x

=

[
b1
b2

]
︸ ︷︷ ︸

~b

. (1)

In the context of the shallow water equations, the unknowns correspond to fluid velocity and height. A
(right) preconditioned linear system with preconditioning operator P would be of the form AP−1Px = b.
P can be viewed as an approximation of A based on a formal LDU factorization. If the blocks A and E
are invertible, the block LDU factorization is

A=

[
I 0

CA−1 I

]
︸ ︷︷ ︸

L

[
A 0
0 S

]
︸ ︷︷ ︸

D

[
I A−1B
0 I

]
,︸ ︷︷ ︸

U

(2)

where S = E −CA−1B is the Schur complement of A. Now A−1 can be rewritten as (LDU)−1:[
I −A−1B
0 I

]
︸ ︷︷ ︸

U−1

[
A−1 0

0 S−1

]
︸ ︷︷ ︸

D−1

[
I 0

−CA−1 I

]
︸ ︷︷ ︸

L−1

. (3)

This formal way of viewing the inverse operation of A gives insight into the critical operations that
are required to solve the linear problem, notably, A−1 and S−1. For large problems the factors of the

subsidiary A block cannot be stored, so S cannot be formed. However, this LDU block factorization can
serve as a guide to maintain the overall algebraic structure and spectrum of A and allow physics-based
approximations to efficiently capture dominant parts of the subsidiary operators. For spectral-element
discretizations, this can be done using domain decomposition methods along the lines developed in [12].

We plan to employ these techniques to atmospheric flow models where subsidiary blocks are
composed of a hyperbolic term and an elliptic approximation to the Schur complement. Block
preconditioning will allow each operator to be treated separately in order to appropriately exploit their
underlying structure and physics. In particular, the hyperbolic operator imposes flow direction that can
be used to construct an efficient solver. In contrast, the elliptic nature of the Schur complement has no
preferred direction but instead requires information to be propagated throughout the domain rapidly.

1.2. Software Framework
The HOMME-Trilinos framework requires cross-language interoperability between HOMME, written in
Fortran, and Trilinos, which is written in C++, using C functions and pointers as mediators. In particular,
HOMME uses the Fortran 2003 interface standard which implements the iso c binding construct.
This allows C functions to be called from Fortran and allows Fortran subroutines to be accessed by C.
Similarly, the Trilinos/C++ code exports routines to C via the extern "C" structure. In conjunction
with the iso c binding, derived data is passed from Fortran to C using the c loc function, which gives
the C address of a Fortran pointer. On the C++ side, Fortran derived data is received as type void *.
Data sent back from C++ to Fortran is recast as a Fortran pointer using the c f pointer conversion
routine. An overview of the general HOMME-Trilinos framework is provided in [6]; extensions of these
interfaces have been adopted by other dynamical core components of CESM [13]. Figure 1 uses blue-
green gradient boxes to depict where function and data transfers are used in the implicit Homme-Trilinos
framework.

A matrix-free, finite-difference Jacobian formulation is a convenient way to introduce implicit
timestepping into an explicit code, since the essential parts of F are already supported. Block
preconditioners require access to the individual components of the Jacobian or a related linear operator,
such as a Picard linearization matrix. We have constructed a preconditioner framework for HOMME-
Trilinos that maintains a matrix-free design by implementing the Picard operator as a Fortran subroutine
that reuses data structures and code in HOMME for element-based computations. This subroutine is
wrapped as an Epetra Operator via a function pointer so that Trilinos solvers can be used to apply the
inverse operation. In Trilinos, linear operators are wrapped in an Epetra Operator abstraction, which has
methods to apply the operator, and (optionally) its inverse, to a vector. With this abstraction for Jacobians
and preconditioners, the preconditioned Krylov methods in Trilinos are available, enabling appropriate
code reuse in both Trilinos and HOMME.

Figure 1 is a diagram of the nested loop structure required by implicit time integration with a matrix-
free, finite-difference Jacobian and a matrix-free block preconditioner P. Blue blocks represent code
that is written in Fortran as part of HOMME, and green blocks represent code in C++ as part of
Trilinos. From the top level, implicit time integration is performed in Fortran/HOMME; underneath
this sits the nonlinear solver which is Newton’s method provided by the Trilinos package NOX. Matrix-
vector products with the Jacobian, J, centered at a point x, with the vector v can be written as
Jxv = [F(x+εv)−F(x)]/ε. The evaluation of F(x) is performed outside the linear system solve, whereas
the perturbed evaluation F(x+εv) occurs as a part of each matrix-vector product inside the iterative linear
solver. FGMRES [14] is used to solve the the linear Jacobian system, since the preconditioner can differ
slightly during each linear iteration. FGMRES is provided by the Trilinos package Belos. The matrix-
free Jacobian and preconditioner are set by using the NOX::Epetra::LinearSystemStratimikos

class. We have implemented the matrix-free block preconditioner through a class that wraps a function
pointer to the Fortran routine for the forward operator P as an Epetra Operator. This Epetra Operator is
then used as the operator that the Belos package uses to evaluate the action of P−1 via GMRES. Future
development will allow for block seggregation of P in order to use packages that support multilevel

evaluation of the individual blocks instead of GMRES.

Implicit Time Stepping

Nonlinear Solve Newton NOX

calc F(x)

calc F(x+!v)

Linear Solve FGMRES Belos

Apply P

Precon Solve GMRES Belos

 c_f_pointer

 Extern “c” & void *

Epetra

iso_c_binding
c_loc

Figure 1. Program flow within the
Homme-Trilinos framework. Blue blocks
are performed within HOMME; green
blocks are performed using Trilinos. Gradi-
ent colored boxes denote function and data
transfers between codes. C extensions to
Fortran and C++ allow for interoperability.

1.3. Conclusions and Future Work
The software infrastructure to support implicit time-stepping with block preconditioners in HOMME
is in place. Employing a completely matrix-free preconditioning framework using multiple Trilinos
packages requires careful attention to data transfers between Trilinos and HOMME. Verification of
the preconditioning framework is under way using parallel tests on the Cray XT5 machines at ORNL
(jaguarpf). Future work includes investigating efficiency of the block preconditioning approach on
problems using time steps well above the gravity wave speed.

2. Superfast linear solvers and preconditioners
We have designed a parallel structured multifrontal algorithm that maintains the nearly linear complexity
as the sequential one, while at the same time minimizing the amount of communication as much as
possible. Below is the outline of our parallel algorithm.

(i) Use a parallel nested dissection algorithm (e.g., ParMetis or PT-Scotch) to reorder the matrix and
obtain the assembly tree with separator nodes.

(ii) Perform parallel numerical factorization in two phases with P processors: (1) Lower-level phase:
perform classical multifrontal factorization. This is first done in serial at the bottom-most levels
with P subtrees, then in parallel at the higher levels when there are fewer than P separators; (2)
Upper-level phase: perform parallel structured multifrontal factorization.

• At the switching level, construct a Hierarchically SemiSeparable (HSS) representation for the
frontal matrices in parallel.

• At each higher level, first eliminate a separator using a parallel HSS factorization algorithm
and then perform parallel extend-add to merge the update matrices to the parent.

The success of this approach depends crucially on an efficient handling of the hierarchical parallelism:
the outer coarse-grained parallelism related to the multifrontal factorization, which is guided by the
assembly tree, and the inner fine-grained parallelism requiring various HSS operations. The outer
parallel algorithm has been established by previous research, most notably implemented in the widely
used MUMPS software package [15]. Our novel work lies in the development of the parallel HSS
matrix kernels with low communication complexity, and seamlessly integrating them into the outer
parallel structure [16]. These kernels include parallel HSS compression via rank revealing QR (RRQR)
factorization for frontal matrix construction, parallel HSS QL/LQ (i.e., ULV) factorization for frontal
matrix elimination, and parallel data-sparse/structured extend-add for assembling update matrices.

Based on the above parallel HSS algorithms, we have implemented an HSS-embedded multifronal
solver for the standard stencils on regular Cartesian meshes. We obtained significant speedup and
memory saving over the classical multifrontal solver when applied to the 2D anisotropic Helmholtz
equations for seismic imaging. We were able to solve a linear system with 6.4 billion unknowns using
4,096 processors of the Cray XE6 machines at NERSC (hopper), in less than 20 minutes. The classical

multifrontal factorization simply failed because of high demand of memory. For smaller problems for
which both methods worked, the HSS-embedded solver is usually 2–3x faster [17].

108 109

100

101

102

103

problem size

M
PI

 W
al

l t
im

e
(s

)

weak scaling

compression
RRQR
redist
MF+HSS
pure MF

Figure 2. Weak-scaling test of the new
superfast linear solver on the Cray XE6
(hopper at NERSC). 2D mesh N×N: 5000,
10000, 20000, 40000, 80000, processor
counts: 16, 64, 256, 1024, 4096. Up to 6.4
billion unknowns.

Acknowledgments
Portions of this research used resources of the National Center for Computational Sciences at Oak Ridge
National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under
Contract DE-AC05-00OR22725. The work was supported in part by the Director, Office of Science,
Office of Advanced Scientific Computing Research of the U.S. Department of Energy under Contract
No. D-AC02-05CH11231. This work performed in part under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

References
[1] Washington W M, Buja L and Craig A 2009 Philosophical Transactions of the Royal Society A 367 833–846
[2] Taylor M A, Tribbia J and Iskandarani M 1997 Journal of Computational Physics 130 92–108
[3] Courant R, Friedrichs K and Lewy H 1967 IBM Journal 215–234
[4] Keyes D, Reynolds D and Woodward C 2006 Journal of Physics: Conference Series 46 433–442
[5] Heroux M, Bartlett R, Hoekstra V H R, Hu J, Kolda T, Lehoucq R, Long K, Pawlowski R, Phipps E, Salinger A, Thornquist

H, Tuminaro R, Willenbring J and Williams A 2003 An Overview of Trilinos Tech. Rep. SAND2003-2927 Sandia
National Laboratories

[6] Evans K J, Rouson D W I, Salinger A G, Taylor M A, Weijer W and III J B W 2009 A Scalable and Adaptable Solution
Framework within Components of the Community Climate System Model (Lecture Notes in Computer Science vol 5545)
(Springer) pp 332–341

[7] Evans K J, Taylor M A and Drake J B 2010 Monthly Weather Review 138 3333–3341
[8] Elman H C, Howle V E, Shadid J, Shuttleworth R and Tuminaro R 2008 Journal of Computational Physics 227 1790–1808
[9] Elman H C, Howle V E, Shadid J, Silvester D and Tuminaro R 2007 SIAM Journal on Scientific Computing 30 290–311

[10] Elman H C, Silvester D and Wathen A 2005 Finite Elements and Fast Iterative Solvers with Applications in Incompressible
Fluid Dynamics Numerical Mathematics and Scientific Computation (New York: Oxford University Press)

[11] Lott P A and Elman H C In preparation Fast solvers for incompressible Navier-Stokes equations with spectral elements
[12] Lott P A and Elman H C 2011 Numerical Methods in Partial Differential Equations 27 231–254
[13] Evans K J, Salinger A G, Worley P H, Price S, Lipscomb W, Nichols J, III J B W, Perego M, Edwards J, Vertenstein M

and Lemieux J F submitted IEEE Software
[14] Saad Y 1993 SIAM Journal on Scientific Computing 14 461–469
[15] MUMPS: A MUltifrontal Massively Parallel sparse direct Solver http://graal.ens-lyon.fr/MUMPS/
[16] Wang S, Li X, Xia J, Situ Y and de Hoop M V 2011 SIAM J. Scientific Computing (submitted)
[17] Wang S, Xia J, de Hoop M V and Li X 2011 Geophysics (sumitted)

